
CPE 470 - Formal Verification



Exhaustive Testing
● For small designs, it is possible to test all possible inputs

○ Cover the whole state space
○ Example: 8 bit Counter

■ Exhaustively tested in several hundred cases

● As designs scale up, get exponentially harder to test
○ State Space Explosion

● Example: 64 bit counter
○ 2^64 = 18446744073709551616 states
○ 1 test every nanosecond → Would take hundreds of years

 

● Cannot test all possible states
○ Could test a random subset, but then could miss bugs
○ How can we verify functionality on sufficiently complex systems?

Glossary
State Space: Set of all possible states



Formal Verification
● How can we prove that our design works in all possible cases?

○ Formal Verification: use mathematical proofs to prove correctness in every case

● SymbiYosys: open source formal verification framework
○ Part of YosysHQ, greater yosys CAD suite

● Model Design as Boolean Expression
● Use a SAT solver to find all possible failures

○ Same mechanism used in math proofs
● If no failures are found, design is correct

Glossary
SAT: Boolean Satisfiability Problem



Bounded Model Checking
BMC provides a way to ensure design correctness 
for N cycles

● N is the Bound: duration to cover
○ Higher Bound → More Expensive to Run
○ Lower Bound → Faster, Less Guarantees

Guarantees correctness for all possible inputs, but 
only for N consecutive cycles

Glossary
BMC: Bounded Model Checking



Proof by Induction
● BMC gave us guarantee correctness 

for set amount of cycles
● How can we prove correctness 

across indefinite amount of time?

→ Use Induction

● Start with a Base Case
○ Base Case is just BMC: prove it 

works within k bounds
● Prove that for every kth state, k+1 is 

still a valid state



Formal Example

http://www.youtube.com/watch?v=9e7F1XhjhKw


References
● https://zipcpu.com/tutorial/class-verilog.pdf 

https://zipcpu.com/tutorial/class-verilog.pdf

